Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.945
Filtrar
1.
Cell Commun Signal ; 22(1): 224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600588

RESUMO

BACKGROUND: Activation of VDR pathway was a promising anti-tumor therapy strategy. However, numerous clinical studies have demonstrated the effect of activating VDR is limited, which indicates that VDR plays a complex role in vivos. METHODS: We analyzed the TCGA database to examine the association between VDR expression and immune cell infiltration in pancreatic adenocarcinoma (PAAD). Western blot, ELISA, ChIP, and dual-luciferase reporter assays were performed to determine the mechanism of VDR regulating CCL20. Migration assay and immunofluorescence were used to investigate the role of CCL20 in M2 macrophage polarization and recruitment. We employed multiplexed immunohistochemical staining and mouse models to validate the correlation of VDR on macrophages infiltration in PAAD. Flow cytometry analysis of M2/M1 ratio in subcutaneous graft tumors. RESULTS: VDR is extensively expressed in PAAD, and patients with elevated VDR levels exhibited a significantly reduced overall survival. VDR expression in PAAD tissues was associated with increased M2 macrophages infiltration. PAAD cells overexpressing VDR promote macrophages polarization towards M2 phenotype and recruitment in vitro and vivo. Mechanistically, VDR binds to the CCL20 promoter and up-regulates its transcription. The effects of polarization and recruitment on macrophages can be rescued by blocking CCL20. Finally, the relationship between VDR and M2 macrophages infiltration was evaluated using clinical cohort and subcutaneous graft tumors. A positive correlation was demonstrated between VDR/CCL20/CD163 in PAAD tissues and mouse models. CONCLUSION: High expression of VDR in PAAD promotes M2 macrophage polarization and recruitment through the secretion of CCL20, which activates tumor progression. This finding suggests that the combination of anti-macrophage therapy may improve the efficacy of VDR activation therapy in PAAD.


Assuntos
Adenocarcinoma , Quimiocina CCL20 , Neoplasias Pancreáticas , Receptores de Calcitriol , Animais , Humanos , Camundongos , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Quimiocina CCL20/metabolismo , Macrófagos/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenótipo , Receptores de Calcitriol/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor
2.
J Am Chem Soc ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661569

RESUMO

Protein@metal-organic frameworks (P@MOFs) prepared by coprecipitation of protein, metal ions, and organic ligands represent an effective method for protein stabilization with a wide spectrum of applications. However, the formation mechanism of P@MOFs via the coprecipitation process and the reason why proteins can retain their biological activity in the frameworks with highly concentrated metal ions remain unsettled. Here, by a combined methodology of single molecule localization microscopy and clustering analysis, we discovered that in this process enzyme molecules form clusters with metal ions and organic ligands, contributing to both the nucleation and subsequent crystal growth. We proposed that the clusters played an important role in the retention of overall enzymatic activity by sacrificing protein molecules on the cluster surface. This work offers fresh perspectives on protein behaviors in the formation of P@MOFs, inspiring future endeavors in the design and development of artificial bionanocomposites with high biological activities.

3.
BMC Oral Health ; 24(1): 476, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643094

RESUMO

OBJECTIVES: This study aimed to design a modified passive-deflation sealer injection needle and investigate its ability to improve obturation quality of single-cone technique through assessing the distribution of voids in root canals using micro-computed tomography (micro-CT). MATERIALS AND METHODS: Forty-eight mandibular incisors were divided into eight groups (n = 6), according to the taper of root canal preparation (0.06 or 0.04), the needle used for sealer injection (modified or commercial iRoot SP injection needle), and the obturation method (iRoot SP sealer-only or single-cone obturation). After obturation, each specimen was scanned by micro-CT. The volumetric percentage and distribution of all voids were first analyzed and compared among groups, then the open and closed voids were separately analyzed and compared among single-cone obturation groups. RESULTS: Compared to commercial needle groups, modified needle groups showed much less voids, especially in the apical root canal part (P < 0.05). Besides, the modified needle groups produced much less open voids than commercial needle groups despite the root canal taper (P < 0.05). CONCLUSIONS: The modified passive deflation sealer injection needle could effectively improve the quality of single-cone obturation through reducing intra-canal voids, especially open voids throughout the root canal, thus might possibly be developed as an effective intra-canal sealer delivering instrument.


Assuntos
Cavidade Pulpar , Materiais Restauradores do Canal Radicular , Silicatos , Humanos , Microtomografia por Raio-X , Cavidade Pulpar/diagnóstico por imagem , Obturação do Canal Radicular/métodos , Preparo de Canal Radicular/métodos , Guta-Percha
4.
Ecol Evol ; 14(4): e11311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38654715

RESUMO

Acoustic communication plays important roles in the survival and reproduction of anurans. The perception and discrimination of conspecific sound signals of anurans were always affected by masking background noise. Previous studies suggested that some frogs evolved the high-frequency hearing to minimize the low-frequency noise. However, the molecular mechanisms underlying the high-frequency hearing in anurans have not been well explored. Here, we cloned and obtained the coding regions of a high-frequency hearing-related gene (KCNQ4) from 11 representative anuran species and compared them with orthologous sequences from other four anurans. The sequence characteristics and evolutionary analyses suggested the highly conservation of the KCNQ4 gene in anurans, which supported their functional importance. Branch-specific analysis showed that KCNQ4 genes were under different evolutionary forces in anurans and most anuran lineages showed a generally strong purifying selection. Intriguingly, one significantly positively selected site was identified in the anuran KCNQ4 gene based on FEL model. Positive selection was also found along the common ancestor of Ranidae and Rhacophoridae as well as the ancestral O. tianmuii based on the branch-site analysis, and the positively selected sites identified were involved in or near the N-terminal ion transport and the potassium ion channel functional domain of the KCNQ4 genes. The present study revealed valuable information regarding the KCNQ4 genes in anurans and provided some new insights for the underpinnings of the high-frequency hearing in frogs.

5.
Heliyon ; 10(8): e29404, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660245

RESUMO

Lung cancer ranks among the primary contributors to cancer-related fatalities on a global scale. Multiple research investigations have demonstrated that there exists a dysbiosis within the intestinal bacteria and short-chain fatty acids (SCFAs) is linked with immune responses in lung cancer. Qingfei mixture (QFM) has been widely used in treating lung cancer, yet the active ingredients and roles of the QFM on immune responses by targeting gut microbiota remain to be elucidated. The chemical constituents of QFM were qualitatively examined by UPLC/Q-TOF-MS. Additionally, we evaluated the therapeutic impact of the organic substance QFM on lung cancer, aiming to elucidate its mechanisms for improving the tumor-immune microenvironment. Herein, we constructed a Lewis lung carcinoma (LLC)-bearing mice model with QFM treatment to observe tumor growth and immune cell changes. Then, the feces were collected and a combinatory study using metagenomes, non-targeted metabonomics, and targeted metabonomics of SCFAs was performed. In vitro experiments have been conducted to estimate the roles of acetate and sodium propionate in CD8+ T cells. Furthermore, we treated tumor-bearing mice with QFM, QFM + MHY1485 (an mTOR activator), and QFM + an antibiotic mixture (ABX) to explore the potential therapeutic benefit of regulation of the tumor microenvironment. A total of 96 compounds were obtained from QFM by UPLC/Q-TOF-MS. Besides, the findings demonstrated that QFM exhibited significant efficacy against lung cancer, manifesting in reduced tumor growth and improved immune responses. In investigating its mechanisms, we integrated gut microbiota sequencing and fecal metabolomics, revealing that QFM effectively restored disruptions in gut microbiota and SCFAs in mice with lung cancer. QFM, acetate, or sodium propionate contributed to the up-regulation of IFN-γ, Gzms-B, perforin, IL-17, IL-6, IL-12, TNF-α expressions and decreased HDAC and IL-10 levels in vitro and in vivo. Moreover, MHY1485 and ABX weakened the effects of QFM on immunomodulation. Collectively, these results suggest that QFM may facilitate immune responses in the LLC-bearing mice via regulating the gut microbiota-derived SCFAs at least partially through targeting the mTOR signaling pathway.

6.
Front Oncol ; 14: 1358750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646440

RESUMO

The tumor microenvironment is a complex ecosystem where various cellular and molecular interactions shape the course of cancer progression. Macrophage colony-stimulating factor (M-CSF) plays a pivotal role in this context. This study delves into the biological properties and functions of M-CSF in regulating tumor-associated macrophages (TAMs) and its role in modulating host immune responses. Through the specific binding to its receptor colony-stimulating factor 1 receptor (CSF-1R), M-CSF orchestrates a cascade of downstream signaling pathways to modulate macrophage activation, polarization, and proliferation. Furthermore, M-CSF extends its influence to other immune cell populations, including dendritic cells. Notably, the heightened expression of M-CSF within the tumor microenvironment is often associated with dismal patient prognoses. Therefore, a comprehensive investigation into the roles of M-CSF in tumor growth advances our comprehension of tumor development mechanisms and unveils promising novel strategies and approaches for cancer treatment.

7.
J Craniofac Surg ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666772

RESUMO

This retrospective cross-sectional study reviewed adult patients with operated cleft lip and/or palate (CL/P) and normal control, and performed comprehensive craniofacial and nasal morphological analyses based on lateral cephalometric radiographs. Pearson or Spearman correlation coefficient assessed intraclass correlation. Seven hundred fifty-seven operated patients with CL/P, and 165 noncleft normal controls were enrolled. Among the normal and CL/P groups, S-N-A angle registered positive correlations with nasal base prominence (S-N'-Sn, degrees). Upper facial height (N-ANS, mm) had positive correlations with nasal dorsum length (N'-Prn, mm) and nasal bone length (N-Na, mm). Although in patients with bilateral cleft lip and palate, there were moderate negative correlations (r=-0.541, P<0.05) with soft tissue facial profile angle (FH-N'Pog', degree) and nasolabial angle (Cm-Sn-ULA, degree). Correlation exists between the morphology of jaw bones and external nose among patients with CL/P. Maxillary sagittal insufficiency is associated with concave nasal profile, and maxilla height is associated with nasal length.

8.
Acta Biomater ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38579918

RESUMO

Given the crucial role of periosteum in bone repair, the use of artificial periosteum to induce spontaneous bone healing instead of using bone substitutes has become a potential strategy. Also, the proper transition from pro-inflammatory signals to anti-inflammatory signals is pivotal for achieving optimal repair outcomes. Hence, we designed an artificial periosteum loaded with a filamentous bacteriophage clone named P11, featuring an aligned fiber morphology. P11 endowed the artificial periosteum with the capacity to recruit bone marrow mesenchymal stem cells (BMSCs). The artificial periosteum also regulated the immune microenvironment at the bone injury site through the synergistic effects of biochemical factors and topography. Specifically, the inclusion of P11 preserved inflammatory signaling in macrophages and additionally facilitated the migration of BMSCs. Subsequently, aligned fibers stimulated macrophages, inducing alterations in cytoskeletal and metabolic activities, resulting in the polarization into the M2 phenotype. This progression encouraged the osteogenic differentiation of BMSCs and promoted vascularization. In vivo experiments showed that the new bone generated in the AP group exhibited the most efficient healing pattern. Overall, the integration of biochemical factors with topographical considerations for sequential immunomodulation during bone repair indicates a promising approach for artificial periosteum development. STATEMENT OF SIGNIFICANCE: The appropriate transition of macrophages from a pro-inflammatory to an anti-inflammatory phenotype is pivotal for achieving optimal bone repair outcomes. Hence, we designed an artificial periosteum featuring an aligned fiber morphology and loaded with specific phage clones. The artificial periosteum not only fostered the recruitment of BMSCs but also achieved sequential regulation of the immune microenvironment through the synergistic effects of biochemical factors and topography, and improved the effect of bone repair. This study indicates that the integration of biochemical factors with topographical considerations for sequential immunomodulation during bone repair is a promising approach for artificial periosteum development.

9.
Nano Lett ; 24(15): 4546-4553, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588452

RESUMO

Organic materials have attracted extensive attention for potassium-ion batteries due to their flexible structure designability and environmental friendliness. However, organic materials generally suffer from unavoidable dissolution in aprotic electrolytes, causing an unsatisfactory electrochemical performance. Herein, we designed a weakly solvating electrolyte to boost the potassium storage performance of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). The electrolyte induces an in situ morphology evolution and achieves a nanowire structure. The weakly dissolving capability of ethylene glycol diethyl ether-based electrolyte and unique nanowire structure effectively avoid the dissolution of PTCDA. As a result, PTCDA shows excellent cycling stability (a capacity retention of 89.1% after 2000 cycles) and good rate performance (70.3 mAh g-1 at 50C). In addition, experimental detail discloses that the sulfonyl group plays a key role in inducing morphology evolution during the charge/discharge process. This work opens up new opportunities in electrolyte design for organic electrodes and illuminates further developments of potassium-ion batteries.

10.
Circulation ; 149(16): 1298-1314, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38620080

RESUMO

Urban environments contribute substantially to the rising burden of cardiometabolic diseases worldwide. Cities are complex adaptive systems that continually exchange resources, shaping exposures relevant to human health such as air pollution, noise, and chemical exposures. In addition, urban infrastructure and provisioning systems influence multiple domains of health risk, including behaviors, psychological stress, pollution, and nutrition through various pathways (eg, physical inactivity, air pollution, noise, heat stress, food systems, the availability of green space, and contaminant exposures). Beyond cardiometabolic health, city design may also affect climate change through energy and material consumption that share many of the same drivers with cardiometabolic diseases. Integrated spatial planning focusing on developing sustainable compact cities could simultaneously create heart-healthy and environmentally healthy city designs. This article reviews current evidence on the associations between the urban exposome (totality of exposures a person experiences, including environmental, occupational, lifestyle, social, and psychological factors) and cardiometabolic diseases within a systems science framework, and examines urban planning principles (eg, connectivity, density, diversity of land use, destination accessibility, and distance to transit). We highlight critical knowledge gaps regarding built-environment feature thresholds for optimizing cardiometabolic health outcomes. Last, we discuss emerging models and metrics to align urban development with the dual goals of mitigating cardiometabolic diseases while reducing climate change through cross-sector collaboration, governance, and community engagement. This review demonstrates that cities represent crucial settings for implementing policies and interventions to simultaneously tackle the global epidemics of cardiovascular disease and climate change.


Assuntos
Poluição do Ar , Saúde da População Urbana , Humanos , Cidades/epidemiologia , Poluição do Ar/efeitos adversos
11.
J Mass Spectrom ; 59(5): e5023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38624283

RESUMO

Microsampling has revolutionized pharmaceutical drug development and clinical research by reducing sample volume requirements, allowing sample collection at home or nontraditional sites, minimizing animal and patient burden, and enabling more flexible study designs. This perspective paper discusses the transformative impact of microsampling and patient-centric sampling (PCS) techniques, emphasizing their advantages in drug development and clinical trials. We highlight the integration of liquid chromatography-mass spectrometry (LC-MS) strategies for analyzing PCS samples, focusing on our research experience and a review of current literatures. The paper reviews commercially available PCS devices, their regulatory status, and their application in clinical trials, underscoring the benefits of PCS in expanding patient enrollment diversity and improving study designs. We also address the operational challenges of implementing PCS, including the need for bridging studies to ensure data comparability between traditional and microsampling methods, and the analytical challenges posed by PCS samples. The paper proposes future directions for PCS, including the development of global regulatory standards, technological advancements to enhance user experience, the increased concern of sustainability and patient data privacy, and the integration of PCS with other technologies for improved performance in drug development and clinical studies. By advancing microsampling and PCS techniques, we aim to foster patient-centric approaches in pharmaceutical sciences, ultimately enhancing patient care and treatment efficacy.


Assuntos
Desenvolvimento de Medicamentos , 60705 , Animais , Humanos , Projetos de Pesquisa , Assistência Centrada no Paciente , Preparações Farmacêuticas
12.
Heliyon ; 10(7): e28580, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560180

RESUMO

Background: This study aims to develop a prognostic model for overall survival based on potential methylation sites within B-cell translocation gene 2 (BTG2) in Chinese patients with hepatocellular carcinoma (HCC). Methods: This is a retrospective study. The beta values of nine CpG sites and RSEM normalized count values of BTG2 gene were extracted from the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) (TCGA-LIHC) dataset, with the beta value representing the methylation level by indicating the ratio of the intensity of the methylated bead type to the combined locus intensity. Pyrosequencing was performed to determine the range of methylation values surrounding cg01798157 site in BTG2 gene. A weighted linear model was developed to predict the overall survival (OS). Results: The beta value of cg01798157 was significantly negatively associated with the mRNA expression of BTG2 in the TCGA-LIHC dataset (Spearman's rho = -0.5306, P = 2.27 × 10-27). The methylation level of cg01798157 was significantly associated with OS in the cohort of 51 Chinese HCC patients (Hazard ratio = 0.597, 95% CI: 0.434-0.820, P = 0.001). Multivariate Cox regression analysis identified methylation level of cg01798157, cirrhosis, and microvascular invasion as independent prognostic factors. The prognostic efficiency of death risk score was superior to that of cirrhosis or microvascular invasion alone. Conclusions: The methylation level of cg01798157 in BTG2 may be an epigenetic biomarker in Chinese patients with resectable HCC.

13.
Appl Opt ; 63(10): A106-A114, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568516

RESUMO

The use of photon counting detectors in X-ray imaging missions can effectively improve the signal-to-noise ratio and image resolution. However, the stitching of photon counting detector modules leads to large-size localized information loss in the acquired projected image, which seriously affects the regional observation. In this paper, we propose a method to fill the inter-module gap based on dual acquisition, referred to as the GFDA algorithm, which is divided into three main steps: (i) acquire the main projection by short-exposure scanning, and then scan again by vertically moving the carrier table to acquire the reference projection; (ii) use the alignment method to locate the projected region of interest; (iii) use image stitching and image fusion to recover the missing information. We analyzed the gray value of the region of interest of the Siemens star projection and the reconstructed conch slice data, and proved that the proposed method can recover the information more smoothly and perfectly. The GFDA algorithm is able to achieve a better image restoration effect without additional scanning time and better retain image details. In addition, the GFDA algorithm is scalable, which is demonstrated in the task of filling the stitching of multiple types of photonic technology detectors.

14.
Environ Pollut ; 349: 123933, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583795

RESUMO

The effects of two benthonic species, Perinereis aibuhitensis and Matuta planipes Fabricius, on the release of polycyclic aromatic hydrocarbons (PAHs) from sediments were investigated using a sediment-seawater microcosm. A Level IV fugacity model was used to simulate the behavior and fate of PAHs in the environment. This study revealed that both benthos significantly influenced the release of PAHs, and Matuta planipes Fabricius had a stronger disturbance effect than another. The final concentrations of Matuta planipes Fabricius group, Perinereis aibuhitensis group and the control group in the seawater phase reached 10.8, 9.94 and 7.90 µg/L, respectively. There were certain differences in the behaviour of the two benthonic species. Matuta planipes Fabricius caused more sediment resuspension, while Perinereis aibuhitensis increased the total organic carbon (TOC) content in the environment. The vertical concentration distribution of sediment indicated that vertical mixing was slightly stronger in the Matuta planipes Fabricius group than that in the Perinereis aibuhitensis group. The fugacity model effectively simulated the release behavior of PAHs, providing insight into PAH transport and distribution. The results demonstrated that bioturbation could promote the release of PAHs from seawater. The amount of PAHs released was significantly correlated with the biological habits of the benthos.

15.
Nat Struct Mol Biol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609662

RESUMO

Microtubule (MT) filaments, composed of α/ß-tubulin dimers, are fundamental to cellular architecture, function and organismal development. They are nucleated from MT organizing centers by the evolutionarily conserved γ-tubulin ring complex (γTuRC). However, the molecular mechanism of nucleation remains elusive. Here we used cryo-electron tomography to determine the structure of the native γTuRC capping the minus end of a MT in the context of enriched budding yeast spindles. In our structure, γTuRC presents a ring of γ-tubulin subunits to seed nucleation of exclusively 13-protofilament MTs, adopting an active closed conformation to function as a perfect geometric template for MT nucleation. Our cryo-electron tomography reconstruction revealed that a coiled-coil protein staples the first row of α/ß-tubulin of the MT to alternating positions along the γ-tubulin ring of γTuRC. This positioning of α/ß-tubulin onto γTuRC suggests a role for the coiled-coil protein in augmenting γTuRC-mediated MT nucleation. Based on our results, we describe a molecular model for budding yeast γTuRC activation and MT nucleation.

16.
ACS Nano ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654614

RESUMO

A noninvasive strategy for in situ diagnosis and precise treatment of bacterial biofilm infections is highly anticipated but still a great challenge. Currently, no in vivo biofilm-targeted theranostic agent is available. Herein, we fabricated intelligent theranostic alginate lyase (Aly)-NaNdF4 nanohybrids with a 220 nm sunflower-like structure (NaNdF4@DMS-Aly) through an enrichment-encapsulating strategy, which exhibited excellent photothermal conversion efficiency and the second near-infrared (NIR-II) luminescence. Benefiting from the site-specific targeting and biofilm-responsive Aly release from NaNdF4@DMS-Aly, we not only enabled noninvasive diagnosis but also realized Aly-photothermal synergistic therapy and real-time evaluation of therapeutic effect in mice models with Pseudomonas aeruginosa biofilm-induced pulmonary infection. Furthermore, such nanobiohybrids with a sheddable siliceous shell are capable of delaying the NaNdF4 dissolution and biodegradation upon accomplishing the therapy, which is highly beneficial for the biosafety of theranostic agents.

17.
Transl Oncol ; 44: 101955, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583351

RESUMO

INTRODUCTION: This study aimed to investigate the safety and efficacy of neoadjuvant chemoradiotherapy combined with immune checkpoint inhibitors (ICIs) in patients with locally advanced rectal cancer (LARC). Patients diagnosed with LARC and treated with programmed cell death protein-1 (PD-1) inhibitors were recruited. METHODS: Four different treatment strategies were employed in this study: plan A [long-course radiotherapy + PD-1 inhibitor/capecitabine + PD-1 inhibitor/XELOX+ total mesorectal excision (TME)], plan B (long-course radiotherapy + capecitabine + PD-1 inhibitor/XELOX + TME), plan C (short-course radiotherapy + PD-1 inhibitor/XELOX + TME), and plan D (PD-1 inhibitor/XELOX + short-course radiotherapy + TME). The basic information about patients, pathological indicators, adverse events, and efficacy indexes of treatment plans were analyzed. RESULTS: 96.8 % of patients were mismatch repair proficient (pMMR) and only 2 patients belonged to mismatch repair deficient (dMMR). The 2 patients with dMMR showed a pathological complete response (pCR) rate of 100 %, while the pCR rate of pMMR patients was 43.3 %. The overall tumor descending rate reached 79 %, and the anus-retained rate was 88.7 % in all LARC patients. Plan A exhibited the highest pCR rate of 60 %, and plan C had the highest tumor descending rate and anal preservation rate. Radiation enteritis was the most common adverse event in LARC patients after neoadjuvant therapy, and its incidence was the highest in Plan A. CONCLUSION: Neoadjuvant chemoradiotherapy combined with ICIs demonstrated favorable efficacy and safety in treating LARC patients.

18.
Magn Reson Imaging ; 110: 138-148, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641211

RESUMO

PURPOSE: Multi-Shot (MS) Echo-Planar Imaging (EPI) may improve the in-plane resolution of multi-b-value DWI, yet it also considerably increases the scan time. Here we explored the combination of EPI with Keyhole (EPIK) and a calibrationless reconstruction algorithm for acceleration of multi-b-value MS-DWI. METHODS: We firstly analyzed the impact of nonuniform phase accrual in EPIK on the reconstructed image. Based on insights gained from the analysis, we developed a calibrationless reconstruction algorithm based on a Space-Contrast-Coil Locally Low-Rank Tensor (SCC-LLRT) constraint for reconstruction of EPIK-acquired data. We compared the algorithm with a modified SPatial-Angular Locally Low-Rank (SPA-LLR) algorithm through simulations, phantoms, and in vivo study. We then compared EPIK with uniformly undersampled EPI for accelerating multi-b-value DWI in 6 healthy subjects. RESULTS: Through theoretical derivations, we found that the reconstruction of EPIK with a SENSE-encoding-based algorithm, such as SPA-LLR, may cause additional aliasing artifacts due to the frequency-dependent distortion of the coil sensitivity. Results from simulations, phantoms, and in vivo study verified the theoretical finding by showing that the calibrationless SCC-LLRT algorithm reduced aliasing artifacts compared with SPA-LLR. Finally, EPIK with SCC-LLRT substantially reduced the ghosting artifacts compared with uniform undersampled multi-b-value DWI, decreasing the fitting errors in ADC (0.05 ± 0.01 vs 0.10 ± 0.01, P < 0.001) and IVIM mapping (0.026 ± 0.004 vs 0.06 ± 0.006, P < 0.001). CONCLUSION: The SCC-LLRT algorithm reduced the aliasing artifacts of EPIK by using a calibrationless modeling of the multi-coil data. The dense sampling of k-space center offers EPIK a potential to improve image quality for acceleration of multi-b-value MS-DWI.

19.
Environ Geochem Health ; 46(5): 157, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592345

RESUMO

The bioavailable mercury (Hg) in the soil is highly active and can affect the formulation of methyl-Hg (MeHg) in soil and its accumulation in rice. Herein, we predicted the concentration of MeHg in rice using bioavailable Hg extracted from soils; additionally, we determined the threshold value of soil Hg in karst mountain areas based on species sensitivity distribution. The bioavailable Hg was extracted using calcium chloride, hydrochloric acid (HCl), diethylenetriaminepentaacetic acid mixture, ammonium acetate, and thioglycolic acid. Results showed that HCl is the best extractant, and the prediction model demonstrated good predictability of the MeHg concentration in rice based on the HCl-extractable Hg, pH, and soil organic matter (SOM) data. Compared with the actual MeHg concentration in rice, approximately 99% of the predicted values (n = 103) were within the 95% prediction range, indicating the good performance of the rice MeHg prediction model based on soil pH, SOM, and bioavailable Hg in karst mountain areas. Based on this MeHg prediction model, the safety threshold of soil Hg was calculated to be 0.0936 mg/kg, which is much lower than the soil pollution risk screening value of agricultural land (0.5 mg/kg), suggesting that a stricter standard should be applied regarding soil Hg in karst mountain areas. This study presents the threshold of soil Hg pollution for rice safety in karst mountain areas, and future studies should target this threshold range.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Solo , Agricultura
20.
Carbohydr Polym ; 335: 122048, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616087

RESUMO

Although conductive hydrogels have been widely developed currently, their low sensitivity and poor stability severely limited their practical application in flexible wearable devices. Herein, a green "stencil" anchoring strategy was proposed in this study to engineer an ultra-stable and supersensitive hydrogel by virtue of polydopamine decorating sodium alginate molecular chains as "stencil" to anchor polyaniline as conductive component. The dispersion of polyaniline was significantly improved by the sodium alginate "stencil" in the conductive hydrogel. The developed conductive hydrogel exhibited outstanding properties that outperformed most conventional ones, including extraordinary sensitivity with a gauge factor of 38.2 and excellent stability with negligible shifting upon long-term cyclic stretching. Moreover, the conductive hydrogel displayed great self-adhesion and reliable self-healing performance endowed by its abundant catechol groups, hydrogen bondings and π-π stackings, respectively. Furthermore, the prepared hydrogel was also assembled as flexible strain and self-powered sensors, which displayed excellent sensing performance, indicating great potential in human-machine interactions, information transmission and road transportation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...